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ABSTRACT

This is one packet of notes accompanying a course Mechanics and Elec-
tromagnetism in Accelerators, offered as part of the U.S. Particle Accel-
erator School, Yale University, summer, 2002. This packet discusses the
deflections caused by magnets and the use of Fourier analysis to describe

the resultant motion.






Chapter 1.
Deflections Caused By Magnetic Fields

Magnetic Multipole Expansions

Particle kicks are administered by magnets. Here we introduce some typical ideal magnet
types, describe their field dependencies and introduce Taylor series expansions, to be called
multipole exansions, that describe both their ideal fields and nonideal deviations from
them.

Though this section is not long, it purports to contain all that is required to represent
all practical accelerator magnets except solenoids. Ideal accelerator magnetic fields are
produced by currents parallel to the design orbit. These currents cause no longitudinal
fields and, in complete generality, their magnetic fields can be expanded in a multipole
series, to be exhibited shortly. It describes the two transverse magnetic field components in
a plane perpendicular to the current elements, (and hence also perpendicular to the design
orbit.) For definiteness, we will take this plane as passing through the longitudinal center of
the magnet. This multipole plane will be so prominent in the analysis of accelerator orbits
that we will use the terminology “multipole planes bend particles” rather than “magnets
bend particles.” Though this grates on the ear, it will do so less than the endless repetition
of an expression such as “the bend at the magnet is calculated from its multipole series”.

Later the use of particular pure magnet types such as quadrupoles or sextupoles will be
described, but formally, at least for now, there is only one generic magnet, a superposition
of all elemental types. Practical details about the construction and special use of pure
magnet types are available from any number of sources.

Of course, some transverse currents at the magnet ends are unavoidable, and they will
cause small longitudinal (also known as solenoidal) fields. We will usually ignore these
small solenoidal fields, or compensate for them only crudely, with the disclaimer that this
is almost always satisfactory. Special (almost certainly numerical) methods are called for
when it is not.

This section, and the two that follow it, concentrate on a magnet present at a par-

ticular lattice location, say the one labeled (7). In order to make the equations appear



less formidable, we suppress the index (i), keeping only the + label to distinguish out-
put and input variables. The effect of a thin element is to make any typical output
quantity f0t) differ from the corresponding input quantity f (i) by a calculated quantity
Af = flt) — i),

A prototypical magnet is the quadrupole.Jr With the quadrupole centered on the
design orbit, the “true” (indicated by superscript T') magnetic field BT (z,y, z), has no z
component (at least on axis), no transverse field on axis, and purely linear dependence on

x and y; it is given by

oBT OBT
T _ T _ Y
By (y,2) = oy (2) y=—_~ (=) v,
oBT (1.1)
T
B, (z,2) = 3$y (2) =z,
BT —o,

where the equality of partial derivatives follows from Ampere’s law. The field components
are more or less constant over the length L of the magnet, and presumeably fall to zero
quickly, but smoothly, outside the magnet ends. We now idealize this field, replacing it
by a field B for which the gradient 0B, /0x is independent of z within the length L, but
vanishes outside that. Of course, the field discontinuities at the ends violate Maxwell’s
equations.i Nevertheless this is often an excellent approximation. We will return later to

a method for improving it. The field B is selected to give the same “field integral” as does

BT (2);

B, 1 [* 0B

The product L 0B, /0x is called the “quadrupole field integral”. Finally we obtain the thin
element idealization by reducing L to zero while holding the field integral constant. Rather
than introducing a new symbol for the field integral we will leave the factor L explicit. This
will leave open for the time being whether the magnet is “thick”, with exactly constant
derivatives over its finite length L, or “thin” in which case the L = 0 limit has been taken.

Historically in accelerator theory the thick approach has usually been taken, but we will

t The dipole is even more essential, but we pass over that temporarily, since we prefer to defer facing the
complication caused by curvature of the design orbit.

i Actually, such a magnetic field could be produced by placing current sheets at the ends, but that is
never done in practice.



almost always take the thin approach. (As mentioned before, by subdividing elements
where that is required for improved precision, we will be able to obtain results as accurate
as can be obtained by the thick approach, without compromising symplecticity.)

The analysis just completed for a quadrupole can be generalized to any magnetic field
caused by currents parallel to the z-axis. The steps in a general argument will be reduced

to the following series of problems.

Problem 1..1. Steady current I flows along the infinite line x = y = 0 from z = —o0 to

z = oo. Show (using Ampere’s law) that the magnetic field is given by

ky kx

Bl‘ — _1"_27 By — ﬁ, (13)

where 72 = 22 + 42 and k = ol /(27) (or 1/c in Gaussian units.)

Problem 1..2. Excluding the origin, show that the magnetic field of the previous

problem can be derived from a magnetic scalar potential ®,, = ktan~!(z/y) according to

B=_Vd,,. (1.4)

Problem 1..3. Again excluding the origin, show that ®,, satisfies the 2D Laplace

equation, ) )
0P, 0°P,,
= 0. 1.5
0x? + Oy? (1.5)

Problem 1..4. Show that either the real or complex part of any analytic function
u(z) + iv(z) of the complex variable z = x + iy satisfies the 2D Laplace equation. Hint:
Use the Cauchy-Riemann conditions; du/dx = dv/dy, Ou/dy = —0v/dx.

Problem 1..5. Instead of treating a single line current at the origin, we now permit
any number of line currents everywhere except in a tube centered on the z-axis (say in the
beam tube of an accelerator.) There is still only current parallel to the z-axis however.
The magnetic field will necessarily still be derivable from a magnetic scalar potential ®,,
satisfying Eq. (1.5). Why? Show that the real or imaginary parts of any non-negative
power (z+iy)°, (z+iy)', (z+iy)?, ... satisfies Eq. (1.5) in the current free region near the
origin, and that the same can be said for any Taylor series in powers of x+iy. Such a Taylor
expansion is called a “multipole series” because pure fields corresponding to different terms

can be generated with magnets having multiple poles.



Problem 1..6. Now remove the restriction that the line currents be infinitely long (but
they are still parallel to the z-axis); without loss of generality it is sufficient to consider
current I flowing only in line element Zdz at the origin. Along a line parallel to the z-
axis, passing through the point (z,y, 0), evaluate (using the Biot-Savart law) the magnetic
field components B, (z,y, z) and By(z,y, z). Integrating over z, show that “field integrals”
satisfy

o0 / o0 /
| Bewwad=-tL [ B G-t (1.6)

o oo r2
where k' is a constant. This “closes the circle” of this series of problems in that this
dependence on x and y is the same as was derived in Problem 1..1 and the following

problems relied only on that dependence.

The result of Problem 1..6 is that the integrals over field components due to finite-length
current elements have the same transverse spatial dependence as do the corresponding field
components for infinite-line currents, calculated in Problem 1..1 It follows the field integrals
can be expressed as Taylor series, as in Problem 1..5 These results will be used immediately,
and then again later in Section 1.4 when analysing the focusing action caused by slanted
pole faces.

The currents in all practical accelerator magnets (except solenoids) flow predominantly
parallel to the design orbit. (The same statement even applies to the “bound currents”
in ferromagnets.) Transverse currents necessary to convey the current to return legs are
usually unimportant—the beam can be shielded from their fields which, as a result, tend
to cause negligible deflection. Because the magnet lengths are finite, sometimes not much
longer than the transverse magnet dimensions, it is not necessarily valid to treat the fields
as two-dimensional. But the above series of problems showed that field integrals are subject
to the same multipole analysis as applies to a purely two dimensional field, even though
the fields themselves may have appreciable longitudinal components and complicated de-
pendence on z. As we proceed, all magnetic deflections will be expressed in term of these
magnetic field integrals. To the extent particle dynamics is expressible this way, detailed
longitudinal field variation is unimportant. In particular the motion is insensitive to the

details of the field shapes in the end regions where the fields fall to zero.



On the basis of this discussion one proceeds with confidence using a “standard” mag-

netic field expansion, valid over the multipole plane;

M n
(LB) +1(LB) = (LB) Y (o +ion) (- D) iy -29) ) - (17

n=0

The upper limit M of the multipole summation is chosen large enough to assure adequate
accuracy over the “good field region” of the magnet. In our treatment, we will restrict M
so that M < Np (the truncation order of the calculation).

Transverse element positioning misalignments (Az, Ay) have been allowed for explicitly
in Eq. (1.7). In this formalism “roll” misalignments, i.e. rotations around the design orbit
can be represented cleanly by appropriate modification of the a, and b,. (See exercises. 1.
Dipole roll in Eq. (1.7). 2. Effect of roll on all multipoles in Eq. (1.7).) Also it is easy
to represent a misalignment that is a pure translation along the local longitudinal z-axis.
Being a solid object, a magnet is also subject to two other orientation errors, which could
be described as small rotations around the local x or y axes. These errors cannot be
represented in the form of Eq. (1.7). Fortunately, with B, vanishing except as an end
effect, and with the direction of particle motion predominantly in the z-direction, the
effects of such errors are extremely small. Should a situation be encountered with fields so
strong, angles so great, etc., that such forces were important, the present formalism would
have to be refined. In that case, numerical solution of the differential equation of motion
through that region would probably be the best way to proceed. As has been implied
repeatedly, we seek an excellent idealization which contains the essential physics, and is
subject to rigorous mathematical analysis, but we do not insist on perfection.

Dipole fields are described by the n = 0 terms. In fact, the notation was designed with
dipoles in mind, which is why the factor By, the nominal dipole field, has been factored
out. The field nonuniformity is quantified by the multipole coefficients. Ordinary steering

dipoles have only a By, component which means that
ap =0, by=1, for an erect dipole. (1.8)

With these definitions, the coefficients a,, and b, for n > 0 give the multipole field errors

as fractions of the nominal dipole field.



Since magnet types other than dipoles have vanishing dipole fields, it is necessary to
replace By if Eq. (1.7) is still to be used. Though the expansion (1.7) is reasonably standard
for dipoles,T there appears to be no established standard for other elements. A natural

choice for the erect quadrupole is to write
. 0By - o\ (@ +iy)"
(LByQ> +i (LBQ) - (La—;’> v iy +107tY (b;? + mg) o

n=2

n—1
n
where R, is a reference radius, say 1 cm. The value of R, and the factor 10~* are normally

chosen such that the numerical values of ag and b;? are of order 1 for “bad”, low order,

multipoles and much less than 1 for high order multipoles.

Equations (1.7) and (1.9) can be reconciled with each other and with Egs. (1.1) by
making the identifications By = 3BQ/3:17 and ay,(by) = 10_4ag(bg)/Rﬁ_1. Often, even for
dipoles, a factor R, like this is introduced, with a value comparable to the bore radius of
the magnet. For the Fermilab Tevatron a value R, = 2.54 cm, better known as an inch, was
selected. For the SSC, R, = 1 cm. Leaving the factor R, out completely, as in Eq. (1.7), is
equivalent to setting it to 1 meter, since we use M.K.S. units. This being an unrealistically
large amplitude, it also causes the coefficients a,, and b, to become numerically very large
for large values of n, even for magnets having excellent field uniformity. This is connected
with the slightly inelegant fact that the coefficients a,, and b, have dimensions depending
on n. Nevertheless, for brevity, all our subsequent analysis will be based on Eq. (1.7).
Expansions for all basic magnet types can be expressed in that form.

In order to coalesce common factors, scaled multipole coefficients are defined by

N LBy ~ LBy
a;n — —an7 bn e
po/e po/e

(A common mnemonic pg/e — “Bp” will be justified below.) In terms of the multipole

by (1.10)

coefficients, scaled magnetic field components are

po/e %Z("Ha") <($_M)”(y—%)>n,
B, = o —“Z(nﬂan)<(x—g)+i(y_%)>n_

po/e

y
(1.11)

t Actually expansion (1.7) is standard only in America. In Europe, coefficients are defined initially in an
expansion of a vector potential which is then differentiated to obtain a series similar to (1.7). As a result
the coefficients can be placed in one-to-one correspondance, but the indices are shifted by one, and the
coefficients acquire extra factors of n!. Otherwise the expansions are equivalent.



In particular the factor 50—172 is the bend angle in radians of a particle of momentum pg

passing through a dipole with field By and arc length L. The factor pg/e is often called

“B-rho” and measured in Tesla-meters, because bend angle = ﬁﬁg = %—fg = %, which is
correct for motion in a circle of radius p. See Eq. (1.35) below.

To recapitulate, both for field components, B;, By, and multipole coefficients b, a,,
the overhead tilde signifies conversion from the “thick element” continuum, absolute mag-
netic field representation of the element to its impulsive, “thin element”, energy indepen-
dent, representation. The factors have been chosen in a way that will simplify the formulas
for “kinks”, i.e. impulsive deflections, due to magnetic fields. (See Egs. (1.32) below.)

The coefficients in multipole series Eq. (1.7) can be related to other conventional mag-
net strength parameters as shown in Table 1.1. Real and imaginary coefficients R, and I,

are defined by
(z +1iy)" = Rn + ily, (1.12)

where the misalignment errors (Az, Ay) can be restored later. The factors 1!, 2!, 3! entering
the definitions of quad strength ¢, sextupole strength S, octupole strength O, etc. are
conventional. Formulas relating transverse momentum discontinuites to the magnetic field
components (Az' = Af = —B, and Ay’ = Ag = B,) will be derived in Egs. (1.32) of the
next section. (Here the usual slope symbols 2/ and 3’ have been abbreviated by f and g

in order to suppress the primes.) Anticipating those formulas we have for pure multipoles

Afn = By|n = _Ban + dn[nv
- - (1.13)
Agn =Bgl|n = bplp + anRy,.
A typical horizontal steering magnet is illustrated in Fig. 1.1 which also shows the

same magnet rotated to steer vertically. The measured, midplane, vertical magnetic field

B, is plotted in Fig. 1.2. It has the form
By (z,y =0) = By (1 + boz? + b4a:4) , (1.14)

where By is the nominal value of B,. For this magnet the dominant multipole imperfection
coefficient happens to be decapole bs. Referring to Table 1.1 it can be seen that this form

can be continued off the median plane by

By (z,y) = Byo (1 + by (5172 - yz) + by (a:4 — 62%y% + y4)) , (1.15)
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R, I, bn an Af=-B, Ag = B,

Horizontal bend 1 0 JA 0 —Ab, 0

Vertical bend 0 Ab, 0 Ab,
Erect quadrupole x Y g=1/f 0 —qz qy
Skew quadrupole 0 gs =1/ fs qsy qsT
Erect sextupole x? —y? 2y S/2 0 —3(2? —y?) 22zy
Skew sextupole 0 Ss/2 222y Ze (22 —y?)
Erect octupole z® —3zy® 32’y —y° 0/6 0 —9(2° — 3zy?) 9 (32%y — y°)

Skew octupole 0 Os/6 G (322y — y°) G (2% — 3ay?)
Erect decapole zt —62%y® day(x® —y?) | D/24 0 D (@' — 62y +y')  Lday(2? —¢?)

Skew decapole +yt 0 D,/24 Ledgzy(a® — y?) Le (2% — 622y + )

Table 1.1: Deflections caused by standard magnets and notation for their strengths
as well as yielding the other field component,
2 2
By (z,y) = Byo (b222y + bsday (z° — y*)) . (1.16)

Note that the field uniformity of the actual magnet is somewhat better at small amplitudes
than either multipole would give by itself. This illustrates the possibility that truncation
of the multipole series can, by defeating desirable cancellation, yield overly pessimistic field
values.

Also plotted in Fig. 1.2 is the “wrong field component” B,(z,y = 10) plotted as a
function of x, along a line displaced to positive y = 10 mm.

If the steering magnet is rotated by 90 degrees (anti-clockwise to an observer looking
downstream so that positive horizontal deflection becomes positive vertical deflection) the
new multipole expansion can be obtained from series (1.15) and (1.15) by transformations

suggested by the labels on Fig. 1.1,
—By (z,y) = (—Buo) (1 + by (y2 - 5172) + by (y4 — 6y’ + 1:4)) ,

) ) (1.17)
By (2,y) = (= Buo) (b22y (=) + bady (=) (v° — 27)),
where the nominal field is now B with sign opposite to Byg. Hence we have
By (z,y) =By (b22zy — bsdzy 22 —y?)),
J(52) = (@~ 1)) -

By (z,y) =Bgo (1 — b ($2 - y2) + by (.T4 — 622y® + y4)) .
To make this form match expansion Eq. (1.11) it is necessary to introduce skew coefficients
ay and a4 into Eq. (1.13)

By (z,y) =By (—a22$y — a4dzy (a:2 — y2)) ,

(1.19)
By (z,y) =Bgo (1 + a2 (!132 - y2) + aq (1‘4 — 62y + y4)) .
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Figure 1.1: A horizontal steering dipole and the same magnet rotated so
that it steers vertically. The median-plane field and its multipole approxi-
mation is shown in Fig. 1.2. The analytic description of the rotated fields
is given in the text.

If the field of the erect magnet is described by the series Eq. (1.7) with the parameter set
(Bo = Boy,b2,a2 = 0,bs,a4 = 0) then field of the same magnet, anti-clockwise rotated
by 90 degrees, will be described by the same series Eq. (1.7) with the parameter set
(Bo = Boz,b2 = 0,a3 = —b2(old), by = 0, a4 = bg(0ld))

Problem 1..7. Check all entries in Table 1.1.

Problem 1..8. An erect quadrupole is misaligned from its design orientation by a small
roll angle A¢ << 1 around the longitudinal axis. In its natural (z/,y’) coordinates, its
multipole expansion is

By +iBy = (' +1iy'), (1.20)
and in the design lattice coordinates it is
By + iBy = (by +iay) (¢ +iy) . (1.21)
Show, to lowest order in A¢, that

by =by, a1 = —2bjA¢. (1.22)
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Figure 1.2: Midplane magnetic field B, in a transversely-limited erect
dipole magnet. Curves with sextupole or decapole “turned oftf” are also
plotted, as well as a curve showing the decapole contribution to the off-
median-plane, “wrong field component” B, (z,y = 10 mm) (displaced up-
wards by 250 Gauss for plotting purposes.). The multipole coefficients are
by = 6.99m 2 and by = —1.46 x 10° m~*%. When the same magnet is used
for vertical steering the non-vanishing coefficients are a3 = —6.99 m=2 and
ag = —1.46 x 10° m~?. The field calculation is due to Sasha Temnyck.

In modeling the effect of a misaligned quad the factor of 2 in Eq. (1.22) must not be
overlooked. A mnemonic for remembering it is that a quadrupole need only be rotated

through angle 7/4 (not m/2) for pure b; to become pure a;.
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Transverse Momentum Impulses Occurring at Multipole Planes

Deflection by a General Multipole

Following the orbit of a particle in an accelerator amounts to keeping track of the effects
of transverse kicks or, if there is acceleration, of longitudinal kicks. Commonly the longi-
tudinal coordinate s is adopted as independent variable and the abbreviations 2’ = dx/ds
and y' = dy/ds are used. The pair z,z’ are often called “1D phase space coordinates”
even though, technically, this terminology should be reserved for x, p, where p, is the true
Hamiltonian variable conjugate to z. In some formalisms the “momentum variable” is
taken to be transverse velocity v, or #,, the angle of the trajectory. To avoid the primes,
and to provide for the the various possible definitions, the symbol f, approximately dx/ds,
and g, approximately dy/ds, will be used as transverse “momenta”, so the transverse
“phase space” coordinates will be z, f,y, g. For linearized (otherwise known as paraxial or
Gaussian) treatment, the propagation from beginning to end of a sector can be represented
by a 4 x 4 “transfer matrix”. If nonlinear effects are to be included the matrix has to be
generalized to a “transfer map” which gives the output coordinates as functions of the

input coordinates.

The evolution of the transfer map is more general than the orbit of a particular particle.
In effect the map represents the orbits of all possible particles. Allowing for the possibility
of the reference orbit being slightly displaced, by introducing phase space displacements
A = (Az,Af, Ay, Ag, Al, Ah) the trajectory can be expressed

)

(0

E(Z)
)

7 + ﬂ()A57 gi) =g £ @
O R AN L A

(i)Aﬂ7 f(l_) _ ?(Z—) A(i—)Aﬂ

)

_ (2

yt i-)A8, (1.23)

The overhead tildes, as in X ,éi)v allows formally for the possibility that the “matrix ele-
ments” depend on the coordinates (i.e. the “mapping” is nonlinear.) Symbols such as
7(27) indicate that the the momentum components are expressed “just before” element

(7). The “linear transfer map” part of Egs. (1.23) describes “linearized” particle evolution



from some arbitrary starting location to lattice location (i) by

(4)

Az (M
Af(i) Fy .
Ay Yl(z)
@ | = i
Mo |9
AR Lb
Hl

Using index notation and summation convention, the evolution is given by

x {0
P
v
Gy
A%
Y

X?Ez) Xii) X?(i)

F?Ei) F4(i) F5i)
Y3(i) Y4(’) Y5(i)
G:(;) Gii) Géi)
Lgi) Lff) Lgi)

H?Ei) Hii) H5(i)

x
F
y
Gy
Ly
b2

where X, as in X éi)a) stands for any one of the matrix elements.
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(1.24)

(1.25)

With m, e, p, v, E, v, and 0 being the particle rest mass, charge, momentum, velocity,

energy, relativistic factor, and fractional momentum offset, respectively, we have

v = /v +v2+ 02
p=\/P; + P+ P2

E =

p:

Ev

2c2 + m2ch = myc?,

?:po(l—i_(s)v

(1.26)

where p,, is the momentum of a reference particle traveling along the ideal closed orbit,

passing through the center of every element’s design location; v, = p002 /Ey is the corre-

sponding velocity. Though the variable ¢ is normally small compared to 1, we will not use

it as an expansion parameter, and Eqgs. (1.26) are all exact.

If (f,g,h) are true canonical variables (normalized by the nominal momentum) they

are related to true velocities (v, = dx/dt,v, = dy/dt,v, = dz/dt) and true momenta

(P2, Py, p2) by the relations

g =

_ P

o
Py
Do
_ Pz
©po

c Y Uy

Voo €

vo 7o €
c vy,

Yo7 €

c*yvy_
dl’

dz
s
dy

_dz
A

P =po (fX+ gy +hs),

P =p (2 +g°+h?).

(1.27)

(1.28q)
(1.28b)
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where v and vy are the usual relativistic factors of the particle being tracked and of the
ideal design particle respectively. To linear order [ and s are equivalent. To that order
then, Eq. (1.27) shows that f and g are identical to the “traditional” transverse slope
variables 2’ = dx/ds and y' = dy/ds.

As mentioned before, with alignment and field errors present, the perturbed closed
orbit deviates from the ideal closed orbit. Systematically in these notes, overhead bars
label parameters of the reference particle traveling on the perturbed closed orbit (which
from now on will simply be called the “closed orbit”.) Hence the closed orbit momentum
is p, and the corresponding velocity is V.

At this point one is tempted to treat transverse and longitudinal variables asymet-
rically, by treating the variable p, or its equivalent §, as a parameter rather than as a
dependent variable. Its treatment then would be essentially different from that accorded
the quartet of transverse dependent variables (x, f, y, g) being tracked. Such a separation is
firmly established in the “lore” of accelerators. It is “justified” by physical considerations
according to which longitudinal oscillations (normally called “synchrotron oscillations”)
occur on a much slower time scale than transverse (“betatron”) oscillations. This makes it
tempting to regard 0 as varying so slowly that it can be temporarily treated as constant.
The very term “chromaticity” defines a lattice property that is applicable to a particle for
which 0 is constant. Unfortunately, after this approximate picture has been too whole-
heartedly adopted, it is hard to figure out which results are independent of this assumption
or to repair those that are not. For example it is difficult to describe “synchrobetatron”
effects or “transition crossing” rigorously. At least for now we will proceed more carefully.

Introducing [ as the longitudinal coordinate of a particle, relative to a central, or
reference, particle, and h as longitudinal momentum the phase space becomes 6 dimensional
with a particle position specified by a 6 component vector (z, f,y, g,l, h). This complicates
the use of the fractional momentum offset . When (f, g, h) are expressed as the output of a
map we must, in principle, regard § also as an output of the map. This means that the map
itself has to be such as to preserve relations (1.26). When tracking individual particles
it is easy to enforce this constraint since one can update f and g and then, using the
constancy of p, update h by using Egs. (1.26). In the map approach p must be calculated

from updated values of (f, g, h); its constancy can used as a check of the calculation.
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One must resist being erroneously reassured by the fact that §, being conserved in
purely magnetic elements, can be treated as a simple constant. To see this, contemplate
the use of the map to generate the time evolution of a “beam” made up of a number
of particles, each having its own individual value of §. Since the same map applies to all
particles, it must contain within itself dependencies on ¢ (such as the fact that quadrupoles
are effectively weaker or stronger for off-momentum particles). It is clear then that §, v,
p, E, etc., cannot be regarded as constant, uniformly over all elements of the map. On
the other hand, for the map to be correct, it must conserve, to its claimed accuracy, the
values of 0, v, p, F, etc., for each individual particle passing through a pure magnetic
element. Below we will use terminology “d is not constant owver the map” to recall this
discussion. The same restriction applies to each of the variables v, p, E, (p/po), v, and
0; they are all essentially equivalent in that any one can be caculated starting from any
other. In contrast, quantities like mass and charge, quantities with subscript 0, like py,
and all quantities with overlines, like p, or underlines, like Az, are constant over the map.

The step about to be taken, though simple, is probably the most important ingredient
of the thin element description. It amounts to justifying the limiting process in which the
magnet length is allowed to approach zero: L — 0. With L finite, the magnet field is large
and roughly constant only in the range —L/2 < z < L/2. The particle trajectory through
the magnet must be obtained by integrating the equation of motion over this range, or
somewhat beyond, if the more accurate fields B? are used. The equation of motion is

obtained from the Lorentz force equation of electricity and magnetism;

dp X y z
— =evxBl =edet| v, v, v, (1.29)

di BT BT 0

which, using v, = dz/dt, reduces to
dp, = —eByT (z,y,2)dz, dpy = eBT (z,y,2)dz. (1.30)

Integrating these equations along the particle trajectory and completely through the mag-

net length yields

Apx:—e/ BT y(2), )dzL—_AQ—eLBy,
(1.31)
T

Spy=e [ B @)y, 2) a2 B,
o0
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The unknown dependencies z(z) and y(z) would have prevented the direct evaluation of the
integrals if L were finite. But in the L = 0 limit, though the integrands continue to depend
on z and y, their dependence on z can be ignored—though the slope of the trajectory is
altered, the transverse displacement does not change along the trajectory in this limit,
because of the infinitely foreshortened longitudinal range. The integrals remaining are the
same as those used in defining thin element multipole strengths, such as in Egs. (1.2).
Substituting the multipole expansions (1.11) into these equations yields equations for

the transverse deflections caused by a thin element;

M n
A= 0= O = —B, = RS (b, + i) (@_Mﬂ(y_%)) |
u i (1.32)
Ag:g<+>_g<—>:B$=%Z<5n+i&n> ((x—M)%—i(y—%)) )
n=0

Having determined (=) and ¢(=) previously, these “kink equations” enable us to obtain
f (+) and g(+) immediately. Knowing these quantities amounts to knowing the particle
direction as it exits the thin element. From that point the orbit will be the straight line

having that direction until the next thin element is encountered.

Deflection by a Dipole

Because dipole elements determine the closed orbit, and the expansion Eq. (1.7) singles
out by and relates it to By as in Eq. (1.8), our treatment of dipoles will not be quite
consistent in form with that of all other multipoles. To represent imperfect dipoles a new
coefficients Aby will be introduced, as well as a new abbreviation, byy = LBy /“Bp”. (The
extra subscript on boy will be justified shortly.) First we consider the design orbit. The
entrance momentum components ( fé_), g(_), h(()_)), in the local coordinates (horizontal but

skewed by the direction of x,) are assumed to be known. Applying Eq. (1.32) with yields
57 =57 = boo, g6" =g (1.33)

Referring to the geometry of Fig. 1.3 (in which angular deflection ®(t) occurs in the
multipole plane, causing the trajectory laboratory angle to change from 0 to @(+)) we

obtain )
o) | pOf()
— =sin~ T ——

b
= gin! 22 (1.34)
Do 2
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For small bend angles,

“Bp"”
(This would be an exact equality for arbitrary bend angles if L were the arc length of the
circular arc through the magnet, but L is usually taken to be the straight line distance
through the magnet. By breaking a magnet into short enough segments this distinction
can be made insignificant.) Because the dipole bend is horizontal gg is unaffected and, by

symmetry, neither is hg. The outgoing momentum of the design orbit is
1- _
59 = Lo, P =0, 1 =i, (1.36

Repeated application of this formula, alternated with accounting for drift regions, com-

pletes the determination of the closed orbit.

Figure 1.3: Geometry of the design orbit as it passes through a thin
element bending through angle ®(+). Parameters of the design orbit are
denoted by subscript 0.

Before discussing the effect of the dipole on a general trajectory we admit the possibility
that the true bend deviates slightly from its ideal value (as is always the case at some level.)
To handle this define

by =1+ Aby, by = boy + Aby. (1.37)
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The definitions of all other multipole coefficients are unaffected by Abg, but even if they
were, the effect would typically be negligible as Aby rarely exceeds 0.001. As stated
previously, the design orbit is not permitted to have vertical deflections, but a small vertical
error bend can be handled by permitting ag to be non-vanishing. The effects of ANbg and

ap can be treated together, starting with Eq. (1.11)

B, =by, B, =ap. (1.38)
Substituting these and Eqgs. (1.23), (1.24) and (1.32) yields for the evolution of the phase
space coordinates, _ .
Af = b07
Ag =ay,

R (1.39)
AF = to be determined,

AG =0.
The final two entries here have been included as a reminder that it will be important also
to determine the effect of the dipole on the transfer map. In particular the coefficient Fis
changed but, by symmetry AG = 0, at least for the leading power in a Taylor expansion.
Other than a small focusing effect to be determined in Eq. (1.45), the dipole element has
no direct effect on the transfer matrix; but a dipole does alter the true closed orbit, which

indirectly alters the transfer matrix through feed-down from nonlinear elements.

Problem 1..9. A “roll” error is an azimuthal rotation around the the design longitudinal
axis. Calculate values of Eli) and ap that model a roll error of magnitude A¢ for a dipole

of strength bo.
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Deflection by a Quadrupole

Next consider the map discontinuity at an ideal, erect quadrupole. In this case the factors
By and B, are given by

By =bi (z — Az), B, = b (y — Ay). (1.40)
Substituting into Eq. (1.32) and matching coefficients order by order yields
Af=—b (T- Az),

Ag =b (7 — Ay),

R . (1.41)
AFﬂ = — leg,
A@g :Bl?ﬂ.

Recognizing the first two equations as “thin lens” equations one sees that by is just
1/f, the “inverse focal length” of the quadrupole, positive in one plane, negative in the
other. From now on, for brevity, we will use the term “focusing strength” to describe
I~)1, though the longer term, inverse focal length, is more descriptive. It has been defined
in such a way as to “scale away” the momentum dependence. Notice that a positive
value of by corresponds to horizontal focusing, vertical defocusing. Like the bending, the
focusing effect is being treated as purely geometric, independent of momentum. We know,
of course, that the focal length varies proportional to momentum. Since this effect has
been accounted for by factoring out central momentum py in definition (1.10) of by we
might be tempted to make a “chromatic” correction proportional to § = (p — pg)/po for
off-momentum values—that would be a traditional procedure. But in our formalism it
would be wrong since Eqs. (1.32) yield the correct momentum deviation, independent of
momentum. In fact Egs. (1.41) include all chromatic effects as they stand—finally, we get
a modest return in simplicity for the large investment that has been made in formalism!

This separation has been especially simple because the quadrupole field has only linear
terms; as a result, order by order, X 3 influences only F 3 and 575 influences only G 3. These
formulas will be re-expressed in more familiar language in the next chapter.

Already the phenomenon called “feed-down” has made an appearance. For example,

)

the term l;l(f — Axz) in the expression for 7(+ represents a “steering effect”, due to the

positioning error of the quadrupole. This is non-ideal behavior since quadrupoles are
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supposed to focus, not steer. This steering affect would already have been noted and
accomodated in the preliminary closed orbit determination.

The complication of linear coupling intrudes when skew quadrupoles (or nonlinear ele-
ments, in most cases) are present. Such elements will mix (i.e. bring in linear combinations
of) Xg and Yp in the expressions for Fzg or G3. These terms alter the linearized description,
but without bringing in nonlinearity. As a result they are rather easily manageable.

Higher orders terms of Eq. (1.7), due to sextupole, octupole, and so on, being quadratic
or higher in (z,y), introduce nonlinearity. For sufficiently small amplitudes they are neg-
ligeable, but for large amplitudes they become dominant, and always destructive to particle
stability at some point. They also cause feed-down, in particular feed-down into the linear
regime. For example, a displaced sextupole causes a steering and in addition, a focusing

effect, which is reflected in the linear transfer matrix.

Problem 1..10. Show that the steering errors suffered by the design orbit as it passes
through a quadrupole of strength ¢ = by with displacement (Az, Ay) from its design

location are given by

Abl, = qAz, and A, = —qAy.

Problem 1..11. Show that the linearized relations giving (A;U(+), A:c’(+)) output particle

coordinates just after a quadrupole of strength ¢ = by in terms of inputs (Az(2), A:c’(_))

Az (1 0\ [ Azl
Ay ) = —q 1 A/ )

and the corresponding vertical relation is

are given by
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Dipole Focusing and Dipole-Edge Focusing

There are two focusing effects of dipoles that our formalism does not yet encompass. Some
people might consider these as two manifestations of the same thing, but we treat them
quite differently. One of these effects, edge-focusing, will be easily represented by the arti-
ficial introduction of an effective quadrupole, and analysed like any true quadrupole. The
best example for which this focusing is important is the ZGS (zero gradient synchrotron.)
Before analysing that case we study a horizontal focusing effect that is significant in small
accelerators for which the radius of curvature is comparable to or less than the focal length
of the main focusing quadrupoles. We will call it “curvature focusing”. In the extreme
case of the weak-focusing synchrotron, there are no quadrupoles and curvature focusing is

dominant.

We take the opportunity in this section to illustrate the philosophy that permeates our
entire treatment of accelerator modeling. Our motto is “use fairly good physics and perfect
mathematics”. “Fairly good physics” certainly includes the requirement that element
idealizations not violate the laws of physics. But consistent with that requirement we will
use casual, almost slipshod, arguments in approximating the two new dipole effects, and
will make no attempt to go beyond lowest order. This may seem inconsistent with our
stated purpose of writing “exact” formulas. But it is not. We analyse only idealizations of
the actual lattice, but we restrict the idealization to the “physics” and do not let it intrude
into the “mathematics”. If there is an element present in the ring that is approximately
an ideal thin quadrupole, we treat it as if it were exactly an ideal thin quadrupole. The
resulting simplification is sufficiently great that subsequent mathematical analysis can be
“exact”. It should be obvious to everyone that lattice descriptions are necessarily only
approximate; we consider it important to segregate physics assumptions (which might
in some cases be called conjectures) from mathematics approximations (which should be
admitted only when the errors they are capable of making are under control.) If our
physical idealizations turn out to be too crude we will have to come back and improve

them labter.Jr

T This discussion of the interplay of mathematics and science should be entirely superfluous. But in
accelerator physics there is perhaps too great a tendency to confuse mathematical necessity or convenience
with physical assumption.
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Fig. 1.4 illustrates particle trajectories in two standard bending elements, a sector bend
and a rectangular bend. The design trajectory enters and leaves a “sector bend” normal
to the pole faces. This means the pole faces are necessarily not parallel. If the faces are
parallel the magnet is called a “rectangular bend”. One reason rectangular magnets are
in common use is that they (especially short, laminated ones) are easier to fabricate than
sector magnets. It is traditional in both cases to let L stand for distance along the design
orbit. Our procedure is to let L approach zero, holding BgL constant. It should be clear
that this limiting process is hazardous since the two pictures look different for large L but

the same for small L.

0"=0/2 o™M=p/2

\‘\ q) l’l’ p
SECTOR RECTANGULAR
BEND BEND

Figure 1.4: Comparison between a sector bend and a rectangular bend
magnet. The central orbit is identical, with arc length L and radius of
curvature p in both cases. The off-axis orbit is focused in one case but not
in the other.

Because edge focusing can later be handled separately it is sufficient to restrict the
formalism to sector bends. For modeling rectangular magnets (or magnets with other
pole face angles) we will use sector bends with extra elements at both ends to model the
pole-face rotations. Just by glancing at the trajectories drawn in Fig. 1.4 it should be
obvious that there is a horizontal focusing effect for the sector bend that is not present

for the rectangular bend. Since our discussion of dipole deflections in Section 1.2 included
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no curvature focusing effect, it is clear that discussion has to be modified—provision for a
term to be added later was included in Eq. (1.39).

To understand the following discussion, Fig. 1.4 should be contemplated under the
assumption that the magnet length is much less than both the radius of curvature p and
the focal length f, i.e. ® = L/p << 1. This requires a bit of mental contortion since,
as drawn, the figure does not really meet this requirement. Another manifestation of the
distorted geometry is that it violates a remarkable theorem according to which object,
image, and center of curvature lie on the same straight line for a sector bend.! Also it is
possible, though rare, for ® to be negative, which would correspond to an outwards bend.
In that case there would be possible sign changes in some of the following equations. The
focusing effect of the sector bend is due to the extra distance traveled in the magnetic field
by the trajectory with displacement z. (In our approximation, this displacement can be
treated as constant through the magnet.) This causes bend ® + 2z’ which is greater than
the nominal bend @ in the ratio (p + x)/p; or (to lowest order)

, @

x = %l‘ (1.42)
The extra deflection Az’ = —22' bends the trajectory back toward the focus; this focusing
action of the sector bend can be ascribed to an effective focusing strength I;’l’ = —Ax'/x,
which, with Eq. (1.42), yields
= ® (1.43)
p

Here we use Eq. (1.41) which identified b1 as the inverse focal length, or focusing strength,
of a quadrupole. From these two equations, referring to Eqgs. (1.10) and (1.35), we can
introduce an effective multipole coefficient bf by

“BP”BP N l? B 1

o~ = —. 1.44
LBO 1 (-I)p p ( )

v =

The positive numerical value of bf (except in the rare case of an outward bend, which would
be represented by negative p) is consistent with the effect being horizontally focusing, which
was obvious from Fig. 1.4.

An extreme case, with ® = x/2 is shown in Fig. 1.5. For the image and object
distances to work out as shown, it is necessary to replace Eq. (1.43) by 5’1’ =sin®/p. Even

if that is done, the thin and thick element representations differ in arc length as the can
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be seen from the figure. For these reasons, it would be foolhardy to represent a 7/2 bend
by one thin element. But by breaking the ninety degree bend into, say, ten equal sectors,
the distinction between ® and sin ® becomes unimportant, and the thin and thick lens arc

lengths become equal to high accumcyﬂL

"equivalent”
thin e ement
~
thin
element p
orbit
p
p | \\
thick uniform
element ®=1/2 field
orbit ’
object image

Figure 1.5: Trajectories through a 90 degree sector bend. Such an angle
is far too great to be sensibly replaced by a thin element. Though replacing
® by sin ® makes Eq. (1.43) give the correct object/image geometry, the
length of “thin element orbit” is appreciably longer than the correct “ thick
element orbit length”.

We are now in a position to complete Eq. (1.39), which updates the map at a sector

bend, and which we repeat here

A? - - 507
Ag :a’()v
R i (1.45)
AF— "%,
p
AG =0.

f m TEAPOT, curvature focusing is modeled by byg = l;f =sin ®/p . This was obtained by matching to
the thick lens transfer matrix of a dipole. This mild disagreement with Eq. (1.43) should not cause concern
since the disagreement is only in cubic terms. This is all the more true since even the curvature effect is
usually almost negligible, and the cubic terms can be made fractionally less important by subdividing the
sector bend.
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The sector bend can be subdivided into shorter sector bends in order to reduce errors due
to the use of thin elements, but that does not reduce the fractional importance of the
curvature focusing. That is because IN)O, which reduces proportional to L as the magnet is
subdivided, appears linearly in both the bend term (first equation) and the focusing term

(third equation.)

The focusing properties of a sector bend are traditionally represented by transfer ma-

trices (remember that the upper case coefficients relate deviations from the central orbit);

($5)-( ) 3 6 )

B <1 :5/2,0/ 2 pq)l(l_ipf/z/ ! ) (ﬁiﬁ)) ) (1.46)

Ay’(+) —\o 1 Ay'(_) :
A small bend angle, & << 1, has been assumed, but one must still be careful to approxi-

mate elements consistently to assure that each determinant value is exactly 1.

There is a certain lack of elegance in our treatment, which replaces a curvature effect
by a focusing effect. It would avoid this, and be conceptually somewhat more satisfactory,
to model the trajectory in the sector bend as the arc of a circle. We have three reasons for
not doing this: it would bring in transcendental functions of the dynamical variables; it
would make it difficult to model nonlinear dipole-field-imperfections; and the straight line

model is simpler and has proved to be adequate.

The curvature focusing effect is restricted to the horizontal plane, which differentiates
it from the focusing of an ordinary quadrupole which defocuses in one plane if it focuses in
the other. In other words, the effect cannot be represented using the multipole expansion
(1.7). One might worry that introducing focusing in one plane with none in the other would
be “non-symplectic”, but the worry would be unjustified. Reassurance can be obtained,
for example, by realizing that ordinary optical lenses focus (or defocus) simultaneously in

both planes.

We can now expand upon the statement made above, that curvature focusing is impor-

tant only at low energies, E. For typical accelerators (with the same maximum magnetic
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field), p ~ E, focusing strength by ~ E~Y2 and bend per half cell ® ~ E~1/2, Combin-
ing these dependencies with Eq. (1.43), one finds that 5’1) / by ~ E~L, which supports the
contention that curvature focusing becomes less important in higher energy accelerators.
The preceding discussion leads naturally into a discussion of dipole edge focusing.
Looking at the right hand figure in Fig. 1.4, it is obvious that there is no net horizontal
focusing in passing through a rectangular bending magnet. It is inescapable that the ends
are causing defocusing just strong enough to cancel the horizontal focusing we have just
become persuaded is caused by the uniform field. Furthermore this is made plausible by the
little entrance and exit wedges, where the upward displaced trajectory in the rectangular
bend misses bending field that it would see in the sector bend. Knowing the pole rotation
angles to be @ = @°% = ®/2, and assuming the focusing strength is proportional to the

pole rotation angle, we obtain directly formulas for the rotated pole focusing effect. To

cancel the curvature focusing, we model the edges with focusing strengths l;in = —l;f /2 and
pOUt — _pf /2. We obtain then bin = —G;n = —®/(2p) and b9 = —%Ut = —®/(2p). The

pole face angles are measured away from the sector bend face, with polarity (agreeing with
MAD) such that positive angles lead to horizontal defocusing. We can corroborate these
formulas by calculating the deflection discrepancies caused by the little missing field regions
mentioned above. They are both x tan(®/2)/p) which agrees provided tan(®/2) ~ (®/2),
which is satisfied in all practical cases. Though it might be considered “apple-polishing”
to make this replacement, it costs nothing to use tan ®, and that is what is usually done;

hin — _tan @i”7 pout — _tan @‘mt.

p p

(1.47)

Naturally these formulas are not restricted to rectangular bend magnets, they apply to any
dipole magnets with non-normal entry of the design orbit. Like the curvature focusing,
the pole-edge focusing is mainly important at low energy. But unlike that case, we cannot
improve the approximation by using thinner elements. For too-low energy, too-oblique
entry, this approximation simply breaks down.

It is easily seen that pole edge focusing is like the focusing of an ordinary quadrupole—
focusing in one plane is necessarily accompanied by equal and opposite focusing in the other
plane. For an ordinary quadrupole this equal but opposite effect followed from Ampere’s

law, as in Eq. (1.1). It also followed from the multipole series (1.7).
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quad square
bypass actual current edge
current current current
b | I

uniform field
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s—— pole‘‘edge” \
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Figure 1.6: The magnetic field of an iron pole, uniform field magnet can
be regarded as being primarily due to surface current sheets, shown in (a)
that define the sides of the uniform field regions. With the entrance face
slanted, these currents can be regarded as a superposition of “quadrupole”
current sheets and square-pole current sheets, as shown in (b). Transverse
bypass currents, shown dashed, are being neglected.

Referring to Fig. 1.6, it can be seen that the magnetic field near the end of a uniform-
field magnet with non-normal entry can be regarded as due to short elements of longitudinal
current, flowing (parallel) on the two sides of the beam. The remaining (anti-parallel) cur-
rents generate a sector bend, normal entry, face. The short parallel-directed end currents
may or may not look to you like quadrupole windings, but we know from the above that
they give horizontal focusing like a quadrupole. Also these currents are parallel to the axis.
From the series of problems, in Section 1.1, dealing with the fields due to short current
elements, we know that the field integrals of B, and B, are subject to the same relations
as any multipole. In particular, there must be vertical defocusing with strength equal to

the horizontal focusing.

By these arguments we conclude that the effect of non-normal entry into, and exit
from, a dipole magnet can (to lowest order) be treated exactly as if there were actual
quadrupoles at the ends, with the uniform field magnet itself being a pure sector bend.

The focusing strengths of these quadrupoles are given by Eqs. (1.47). The map evolution
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caused by the slanted poles is described by Egs. (1.41), with b; obtained from Eqs. (1.47).
Using this procedure we can, without loss of generality, treat any uniform field magnet,
whatever its pole-face angles, as a sector bend, by placing artificial quadrupoles of correct
strengths at entry and exit.

Another way of analysing the focusing due to rotated poles is to analyse Maxwell’s
equations near the pole. The bulging out of the fringe field at the magnet end, causes a
field component B, proportional to y, which is what causes the vertical focusing action.
Integrating from well outside the magnet to well inside the the equality of the vertical
defocusing strength to the horizontal focusing strength follows directly. See Steffen Ref. 1
for details.

There is an all-too-likely source of error due to curvature focusing or rotated pole-face
focusing that can accompany the treatment of dipole magnets. If one halves the length
of a quadrupole and doubles its strength, the effect on the lattice is usually small. But
doing the same thing with dipole magnets can lead to curious focusing effects. The effect
of L — L/2 and By — 2By is to leave the bend angle ® unchanged. But it also has the
effect of halving the radius of curvature p — p/2 which, by Eq. (1.43), causes 5’1) — 25?,
doubling the curvature focusing. For rectangular bend magnets, Eqs. (1.47) show that
cutting the length in half and doubling the field also doubles the edge focusing.

Just as the effect of a slanted dipole face is equivalent to the effect of a quadrupole,
the effect of a slanted quadrupole face is equivalent to a sextupole, and similarly for higher

multipoles.

Problem 1..12. Justify the previous sentence using the reasoning of the series of
problems in Section 1.1. Also calculate the sextupole strength needed to model (horizontal)
non-normal entry of the design orbit into a quadrupole of focusing strength b1 and length
lg. Hint: first calculate the excess deflection blameable on the pole slant angle 0y for a
particle with displacement x and then, using Table 1.1, determine the equivalent sextupole

strength.

Problem 1..13. Determine the effective sextupole for modeling entrance at vertical

angle #y into the quadrupole of the previous problem.
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Problem 1..14. For a rectanglar bend dipole with bend radius of curvature p, assuming

small deflection angle ® << 1, show that the linearized transfer matrix relations are
AzHD\ (1 pd Az Ay 1 p® Ay-)
A.’IZI(+) —\o 1 A.I'I(_) ’ Ay'(+) o _(p/p 1 Ay'(_) :

Longitudinal Fields at Quadrupole Ends

This section follows Steffen.2

Everywhere except in this section and in a later section
discussing solenoids, longitudinal magnetic fields have been or will be neglected. One
configuration for which this neglect is hard to justify is at the ends of “IR quads” which
are quadrupoles adjacent to low-/ intersection regions. Such quads are rarely thin and the
central trajectory is often off-axis and slanted at that point. Since the g-functions are large,
and very different at the two ends, the end effects are not at all correctly included in the
length-strength product that normally gives an adequate representation of the magnetic
element. Also it only makes sense to treat each end individually. In problem b.3 the effect
of a slanted pole is estimated. In this section, we give formulas for estimating the effect
of the longitudinal field on entrance to or exit from a quadrupole. The word “estimate”
is to be taken seriously here; if the estimate is that the end effect is important then some
more accurate method such as numerical tracking through a grid of measured field values is
called for. Unlike all other calculations, the symplecticity of this calculation is not assured.
The ideal central field in a quadrupole, according to Eq. (1.1) is
%

B, =Gy, By,=Gz, where G = 5 o

(1.48)

An end field that increases from zero, say at the origin z = 0, to match this field at 2z = b
is
G G G

B, = 5 Y B, = 5 L% B, = 5 %Y (1.49)

It is easy to check that this field satisfies both V - B=0and VxB= 0, which makes
it a valid free space magnetostatic field. Quadrupoles carefully designed for spectrometers
have iron “mirror plates” that match to this field at z = 0 and the quadrupole ends are
contoured as space hyperboloids to match the fields in the range from z = 0 to z = b.

(A true mirror plate would consist of a ferromagnetic slab perpendicular to the beam
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centerline. Such a slab would be unacceptable in practice as the beam would have to
pass through the slab. As a result there is necessarily a hole bored through the slab.
This invalidates Eq. (1.49) over a longitudinal range comparable with the bore radius.)
Steffen gives curves illustrating the accuracy of this approximation. With mirror plate the
agreement is quite good. Without mirror plate the disagreement is appreciable, but we
will use Eq. (1.49) even knowing that IR quads in high energy accelerators rarely have
mirror plates or correctly contoured ends. If the distance b, undetermined in the absence
of mirror plate, is taken equal to the bore diameter of the quadrupole the end fields are
roughly correct.

Let us assume that b is sufficiently short that the end can be represented as an impulse.

Then, integrating from z = 0 to z = b the field integrals corresponding to Eqs. (1.49) are

~ B, L.g Gb
Bx = = Y,
po/e  2po/e
~ B,L Gb
B, =—v=f _ (1.50)

= z,
po/e  2po/e
B _BzLeﬂ‘ G

= zy.
* " pofe  pofe

Comparing with Eq. (1.40), we see that the 2z and y components match the ideal quadrupole

components. We drop them on the assumption that they have already been accounted for

by appropriate choice of quadrupole length. By Eq. (1.29) the remaining deflection is

1 GL 1-
Af L Ly = —byLay,
Lpy/e c L (L51)
A 1 GL v, 15 v )
= - — = —_ 7
g Lpo/e ¢ Lt e

Here the factor L, the quadrupole length, has been introduced artificially so the strengths
are expressed in terms of the fundamental quadrupole parameters, focal length b; = 1 /f
and length L. Notice though that the only circumstance in which the value L can affect
this calculation is if the quadrupole length is so short as to invalidate the approximations
on which this formula is based.

The deflection caused by the longitudinal end field can be seen to be cubic in the small
quantities v, /c, x, and y; one might say “octupole order”. As stated before the effects are
likely to be negligible except at sensitive close-to-IR locations, where these factors as well

as the g-functions are unusually large. Note though that the deflection depends on the
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slope, which is possibly non-symplectic (or rather hard to approximate without destroying

symplecticity) and would be likely to invalidate calculation of long term stability.

Why Momenta are Preferable to Velocities

This section can be skipped without loss of continuity.

While discussing quadrupole focusing we have seen how chromatic effects are included
automatically. Now we digress to show that another choice of dependent variables, using
(vg,vy) instead of (f, g), would complicate this as well as causing “mixing of orders”, both
feed-down and feed-up, even for dipoles and quadrupoles. Though having manageable
effect on the linearized description this would seriously complicate the formulation, and
impair the convergence in higher orders.

Using Egs. (1.27) and (1.11), the momentum discontinuities due to a multipole plane,

given by Eqs. (1.32), can also expressed as discontinuities of the velocity components;

(+) (=)

vl Vs _ WYp a0 v/c g
- Yy - Y
@ o e (1.52)
Yy Uy _ Y070 g also v/e B
c c cy ° L+6 "

With v being constant in magnetic elements, the last expression is simple, and as we
have seen, exact. Note that Aw,/v varies as (1 + 6)~'. Tt is this form that justifies the
omnipresence of the variable 0. For dipoles, this dependence of deflection on ¢ causes
dispersion. For quadrupoles it causes chromaticity. This is the form used for particle
tracking in TEAPOT.

When these equations are used to advance the map through a multipole plane, the
extra factor (v/c)/(1+ ) has to be included, already making the analysis somewhat more
complicated than was true for momenta. As it happens, at least in the relativistic regime,
the factor v/c is quite accurately constant and the denominator factor is easily Taylor
expanded into a polynomial in § in the numerator. Still, neither of these approximations is
particulary attractive, and the former is simply unacceptable for less than fully relativistic
machines, such as typical proton “booster” accelerators in the few GeV range.

We proceed to try to improve the non-relativistic situation. For this it is preferable

to use the middle expressions of Eqgs. (1.52), since the only factor varying over the map is
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1/5. In preparation for replacing power series division by power series multiplication we
define a function v, (vs, vy, v,) = 1/7, where the “I” is mnemonic for inverse. In order to
proceed beyond linear order it is necessary to express v, as a Taylor series in the “small

variables” (vg,vy) as well as a longitudinal deviation away from design. For transverse
transverse velocity v = |/v2 + vZ, and setting ¢ = 1,

1— 2_+_ 2
%:’YO’YI:\/—(UT )

g. 1 1 2 1 3
L (1o 0?) - (B ) (L sk ooy o) (19Y)
2 8 2 8
1, 1
:1—§UT—E(Uz+vz0)(vz—ﬂz0)+"'

This manipulation has been performed in hopes of obtaining a rapidly convergent power
series for substitution in Eqgs. (1.52), where it could be multiplied by the (also rapidly
convergent) series expansions for By and By, yielding, after truncation, a useful, improved
approximation. The manipulation has been only partly successful. The second term is
quadratically small in the small quantity vy, which is good. It is only linearly small in
the small quantity v, — v,9, but that factor itself will turn out to be quadratically small.
But the cancelation between a numerator term and a denominator factor does not occur
in higher orders. Unfortunately this degrades the convergence of subsequent terms of

Eq. (1.53). This behavior is characteristic of the balky nature of the relativistic factor -.

Problem 1..15. Work out the next term in the expansion (1.53) and confirm the poor

convergence of this series.

It can now be understood that the choice of momenta (f, g, h) was made precisely to
avoid power series expansion of the relativistic factor v. We have arrived at the conclusion
(which may not surprise those knowledgable in relativistic mechanics) that the dynamical
equations are simpler when expressed in terms of momentum rather than velocity. We
can worry, having suppressed this factor in the dynamics, that it will pop back up in
the kinematics. This fear will turn out to be unjustified—though velocity components
determine the intersection of a trajectory with the next multipole plane, it is only their

ratios that matter.



Chapter 2.
Fourier Analysis of 2D Nonlinear Motion

Analysis of a 4 x 4 Symplectic Matrix

In Section 2.5 explicit evaluation of the eigenvalues of a fully general 6 x 6 symplectic
matrix has been exhibited. For this section, in the interest of reduced complexity, we drop
back to 2D motion, either pure transverse (x,y) motion, or, replacing y by z, horizontal-
longitudinal motion. A difference equation, satisfied by the linearized transfer matrix, and
needed for Fourier analysis of the motion, is the most important result to be obtained.
The column vector of coordinates x = (z, f, v, g)T represents small transverse devia-
tions from the reference orbit. Linearized evolution of x from longitudinal coordinate sg

to s is described by a transfer matrix M(s, sg),
x (8) = M (s, s0) x (80) - (2.1)

The fact that M is symplectic, critical to the derivation of the difference equation being

sought, can be expressed using the matrix

0O -1 0 O
1 0 0 0
S = 0 0 o0 -1l (2.2)
0O 0 1 0
For M to be symplectic, its inverse must be equal to its “symplectic conjugate” M,
M~ =M=-sSMTs. (2.3)

Partitioning the 4 x 4 matrix M into 2 x 2 elements, it and its symplectic conjugate are

A B — A C
A 2 x 2 matrix A and its symplectic conjugate are related by
—~ _ f(a b\ _(d =b\ __ _1
Ao (0 0= 2)-aaaa 25

provided the determinant det |A| is non-vanishing.
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Especially important for analysing the state of (x,y) coupling is a particular off-

diagonal combination from Eq. (2.4), E = C + B and its determinant £ = det |E|.

_ b oo b
E=cCc-B=(¢ ) [cantba c 12) et Bl — oh— fo— & v
i (g h’) <021—b21 coo +b11 )’ et |E[=e fa (2.6)

For a stable lattice, eigenvalues A4 and Ap, of M (with their complex conjugate twins)
satisfy the relations

Ay =4+ 1/Ag =exp (ipa) +exp (—ipa) = 2cos pg

Ap = Ap +1/Ap =exp (ipp) + exp (—iup) = 2cos up, 2D
where 4 = 27v4 and pup = 2wvp are real angles. The quantities A 4 and Ap, eigenvalues

of M + M, satisfy
Ag+Ap =trA+trD
(2.8)
ApAp =tr A trD — €£.

For motion at small amplitude the linearized transfer matrix description gives a thor-
oughly satisfactory description of the motion. In the presence of coupling the tunes v4
and vp are only approximately equal to the ideal, (or nominal, or design) tunes v, and
vy. But v4 and vp are readily measurable, no matter how badly coupled the lattice is.
For that reason, they can be regarded as known, or at least operationally measurable,
quantities. In fact the greatest practical application of Fourier analysis of particle motion
(as measured with beam position monitors), is for the operational measurement of these
tunes. The formulation of this section can be used to support that procedure. But that
is peripheral to our main purpose which is to prepare for subsequent harmonic analysis of
nonlinear motion.

As partially seen already, the combination

v -1 _ tr A 0 0 E
N G M) 29

has simpler properties than M. Using the fact that M~! can be used to propagate back-
wards in time, this relation can be used to obtain four third-order, coupled difference
equations that relate the coordinates on three successive turns (labeled —, 0, +):

ry —trAxyg+x_ =hyy — fgo

f+ —trA fo+ f- = —gyo+ego

y+ —trDyo+y— =exo + ffo

(2.10)

g+ —trD gy + g =gz + hfo.



36

(Please forgive the clash of symbols; the coefficients e, f, g, h, introduced for brevity in
Eq. (2.6), and not to be confused with momentum coordinates, are retained only to main-
tain contact with decoupling algorithms of TEAPOT, and will be eliminated straight
away. )

It is possible to uncouple these equations. Start by squaring Eq. (2.9), subtracting 21,
and using Egs. (2.8);

_ tr2 A+ (€ -2)1 0 0 E
M2+M2:<r é ) tr2D+(g_2)I>+(trA+trD)<E 0)' (2.11)

From Egs. (2.9) and (2.11), form the combination that eliminates the off-diagonal blocks,
M? + M2~ (Ag+Ap) (M+M™) + (2+ AsAp) T =0. (2.12)

Using this equation to obtain a difference equation for the phase space coordinates on

successive turns yields
X4+ +x— —(Ag+Ap) (x4 +x-)+ (2+ A4sAp)x0 = 0. (2.13)

This is the equation we have been seeking. Before applying it to practical problems such
as closed-orbit finding and feedback control, we note the simpler equations that hold in

case there is no cross-plane coupling. In that case, Egs. (2.7) and (2.8) reduce to
Ay =tr A =2cos juy, Ap = trD = 2cos j1y; (2.14)
the right hand sides of Eqs. (2.10) vanish; and the first equation, for example, becomes
T4 —2c08 iy o+ - = 0. (2.15)

It is left as an exercise to show that this equation and the corresponding y-equation are

consistent with Eq. (2.13) when there is no coupling.
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Finding the Closed Orbit

Koutchouk? has described a closed-orbit finding procedure, based on Eq. (2.15), which he
ascribes to Verdier and Risselada.* That method, which assumes purely linear motion, will
now be described and then generalized. Much the same description applies whether one is
discussing operational procedures applied in the control room of an actual accelerator or
simulation in a computer. In either case, finding the closed orbit is usually performed by
starting with a guess and iteratively improving it.

In the derivations of the preceeding section it was implicitly assumed that transverse
coordinates were measured relative to an unambiguous, previously-known, closed orbit. In
order to treat the closed orbit as unknown we can make the replacement x — x — X¢o in

Eq. (2.13) to give, after simplification,
X4+ +X—— — (A4 +Ap) (x4 +x-) + (2+ AsAp)x0 = (2 — A4) (2 — Ap) Xco. (2.16)
and correspondingly, make the replacement © — = — x¢o in Eq. (2.15)
Tq — 208 iy o + x— = 2 (1 — o8 pig) Zeo- (2.17)

The parameters A4 and Ap in Eq. (2.16) are simple functions of operationally mea-
surable tunes, as is cos p, in Eq. (2.17). In the control room of an actual accelerator, if
circulating beam can be obtained, they can be measured by spectrum analysis of beam
position monitor data. Similarly, in a computer simulation, if multiple turns survive, the
tunes can be obtained by FFT analysis. Unfortunately the “if’s” in the two previous sen-
tences are often not satisfied. For that reason we need a robust procedure for extracting
tunes that makes minimal operational demands. Following Verdier and Risselada we ob-
tain another equation like Eq. (2.17) by incrementing the indices by one, (which leaves the

right hand side unchanged), and then eliminate z¢o from the two equations,
x3 — 2CO8 fiz T2 + T1 = Ty — 2COS iy L1 + Tg. (2.18)

Solving for p, yields
T3 — T2 +T1 — Xo

2 (g — 1)
From this equation, starting with zg, if the particle (or beam) can survive three full

COS [y = (2.19)

turns, and the displacement measured on each passage through the origin, the tune can
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be obtained. Once the tune is known, the closed orbit is obtained from Eq. (2.17),

T9 — 2C0S [y 1 + To

Tco — (220)

2 (1 — cos py)

v
]
/

e

X1 0 X(measured)

nominal
origin

S .

(

Figure 2.1: Geometric construction indicating how tune and closed orbit
can be found from measuring the transverse displacement for several suc-
cessive turns. Open squares are measured. Closed circles lie on and define
the correct phase space circle.

This prescription can be foiled by measurement errors, by the presence of coupling,
or by the presence in the lattice of nonlinear elements that violate the conditions used in
deriving the difference equation. There is nothing we can do about measurement errors
except complain about the instrumentation. Before proceeding to discuss what can be
done about coupling we consider nonlinearity.

Because of nonlinearity, Egs. (2.19) and (2.20) will be not quite satisfied and the closed

orbit not quite found. This performance is typical of almost all operational accelerator
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procedures. The universal attempted fix is to proceed by iteration. In this case, having
found a tentative value for zco we launch another particle from that point. Assuming a
sensible prescription for picking the initial slope is available, the ability of nonlinearity to
foil this approach will rapidly decrease with each succeeding iteration, as the orbit will stay
in progressively reduced, and hence more linear, regions. It can certainly happen however,
that the first iteration fails due to nonlinearity. Either the particle is lost completely, (a
possibility the derivation excluded,) or the errors make the “improved” closed orbit worse
than the tentative starting value. In either case an alternate approach must be found.
In practice the alternate approach is usually trial-and-error or “knob-twiddling”, which
normally succeed eventually. From that point rapid convergence employing Eqs. (2.19)
and (2.20) is typical.

We now wish to generalize this prescription in two ways in order to make its convergence
more robust. First, as mentioned in the previous paragraph, a procedure for improving
the starting slope is required. The derivation of the previous section shows that the slope

variables satisfy the same difference equations as the displacements. As a result we obtain

_ Ja—2cospg f1+ fo

feo =" (1= cos ) (2.21)

Assuming slope values are available (which is certainly true in a computer simulation, but
would only be true by bringing in another beam position monitor in the laboratory,) this
equation can be used to improve the tentative closed orbit initial conditions.

In practice, the presence of coupling seriously compromises the effectiveness of this
closed orbit finding procedure. Because coupling is a “linear effect”, its fractional im-
portance does not reduce with succeeding stages of iteration. For too great coupling the
above approach simply does not converge. For that reason we contemplate using the more
general Eq. (2.16) to obtain simultaneous convergence in both planes. As in the uncoupled
case, there are two stages, the first to find the tune(s), the second to improve the initial
conditions, (the tentative closed orbit).

Four alternative approaches to finding the tunes suggest themselves. The first two are
applicable only if the coupling is weak, which is almost always the case since its presence
is unintentional, and hence its effect on the tunes is likely to be negligible. (Because tune

shifts depend quadratically on skew quadrupole strengths.) In that case the “design” tunes
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can be used, or the determination of 1, using Eq. (2.19), and a corresponding determination
of 1, may be adequate. A third, more robust approach is to obtain equations for A4 and

Ap in a manner analogous to the derivation of Eq. (2.19). We write the vector equation

X4—|—XO—(AA—|—AD) (X3+X1)+(2+AAAD)X2 = ( )
2.22
X5 + X1 — (AA + AD) (X4 + XQ) + (2 + AAAD) X3.

Collecting terms yields

T4 — T3+ T2—T1 —T3+ T2 As+Ap _ T5 — T4 + 2203 — 229 + 11 — T
Ya—Y3+y2—y1 —ys+u2 AqAp Ys —ya+2ys — 22 +y1—yo )
(2.23)

These equations can be solved for A4 and Ap if data from five consecutive full turns is
available.

A fourth, somewhat noise-immune approach, applicable when multiple turns can be
obtained, has been applied to the LEP lattice.® Define the expectation value < f > of
N samples f; by va fi/N. Multiplying the z and y components of (2.13) by zp and yp
respectively, taking expectation values, and rearranging to express as equations for A4 and
Ap yields

(< (x4 +2_) 30 > —<x§>> (AA+AD>

<(y+ +y-)vo> —<yj> AgAp

_(< (.T+++.T__).T0>+2<$%>>
< (st +y——)yo > +2<yj >

(2.24)

When this equation was applied for 512 turn data, and solved for A4 and Ap, accuracies
of approximately £0.003 were obtained for the tunes v, and v,.

Once the tunes are known, the coefficients in Eq. (2.16) can be evaluated, and improved
values for all four closed orbit coordinates can be obtained;

o = Xt +x__ — (A4 +Ap) (x4 +x-)+ (24+ AsAp) x0
o (2—A4)(2-Ap) '

(2.25)

This formula has not yet been incorporated into an operational program, but its effective-

ness is theoretically assured.
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Use of Spectral Analysis to Identify Sources of Nonlinearity

Correlating Spectral Lines With Multipole Terms.

In this section we develop a semi-quantitative method for diagnosing likely sources of
nonlinearity by looking for peaks in the spectra derived from multiturn beam position
monitor output. These spectra can be obtained by spectrum analyser hardware or by

digital Fourier transformation.

For sufficiently small amplitudes all nonlinear terms become negligible and the motion
is described approximately by the pure (uncoupled by preference) betatron motions z; =
ag cos(2mv,t) and yp = ay cos(2myyt) for t = 0,1,.... These “fundamental oscillations”

“zero’th” approximation to the motion. To obtain an improved

can be regarded as the
approximation the multipole deflection terms can be treated, perturbatively and artificially,
as being due to “external drive” deflections. These deflections are nonlinear functions of the
fundamental oscillations amplitudes, but since they are periodic with the same period, they
can be expessed as “nonlinear harmonics” of the fundamental oscillations. The purpose
of this Fourier expansion is to again “linearize” the problem so the perturbing higher
harmonics can be obtained as the well known driven response of a linear system. This

procedure can be iterated, but the possible harmonics proliferate badly. Higher iteration

is however justified in the (quite common) case of harmonics absent only in lowest order.

Observing which peaks are present, and with what strength, and then correlating
with Fourier expansions of particular multipole fields can give clues as to which fields are
causing the motion to be nonlinear. Conversely the importance of nonlinearities known
(from magnetic measurements) can be assessed. For interpreting spectra in this way it is
necessary to write Fourier expansions of the multipole expressions for deflections Az’ ~ Af

and Ay’ ~ Ag appearing in Table 1.1. The following formulas are needed for those
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expansions:
My my Mg my 0
y = cos ((mgvy + myvy) 27t) , iy = y + ) 1= .
1
T = ag cos (2mv t) = ay
0
Y = ay cos (2mvyt) = ay X
2 2 2 2
xZ_yZZG_xZ_ﬂ0+ax ayo
210 2|2 2 0
) 1
TY = Galy|
3 3 ) 0/2, 3 30:1'0/!2/ 1 30/% — 60/1{7/,!2/ 1 (2'26)
r’ —3ry’ = —| —
Y 410 4 |2 4 0
a310 3q2a,|2  3a3 —6aa,|0
a2y — = — Oy y %y
413 4 |+£1 4 1
4 6ala?]2 atlo
4 2,2 4 4 z%y y
T — 6x =a —=
vty 1o 8 |2 4 |4
4 2 2 4 2 2 4 2 2 4
day — 12azay |2 da, —12aza, |0 3ay — 12azay, + 3a, |0
8 0 8 2 8 0
3 3 3
4$3y B 4$y3 _ 4a§,ay 3 B 4axay 1 12a5ay — 12amay 1
8 |+1 8 |+3 8 +1

my
with z-harmonic number m; on top and y-harmonic number m, on the
my

bottom is intended to help in correlating with spectra having spectral lines labeled the

The notation

same way.
Since the factors a; and a, are presumeably, in some sense, “small”, the dominant

lines tend to be those having minimal powers of these factors.



43

My 0 1 0 2 1 0 3 2 1 014 3 2 1 0
My 0 0 1 0 +1 2 0 £1 +2 3|0 £1 +2 43 4
bo
ao
by Qg
a1 Ay
bs az,a; al a;
as Ay Gy
bs al,a.a; a3 aza2
a3 azay, a aza, :
by |a},a2al,a; a},alal aZa?,a; at az,a; ay
ay azay, awaz aday awag
Table 2.1: Spectral lines in X-spectrum (horizontal) caused by particular multipoles.
a, and a, are “fundamental” amplitudes. There are also numerical factors, of order one,
not shown.
My 0 0 2 1 0 3 2 1 014 3 2 1 0
My 0 0 1 0 +1 2 0 £1 +2 3|0 £1 2 43 4
bo
ag 1
by y
a1 Qg
by A0y
as az, ai al az
bs azay,a, azay, .
as al,a.a; ad aya;
by alay,azal asay azal
ay |a},aial,a;, a},alal aZa,a; at az,a; ay
Table 2.2: Spectral lines in Y-spectrum (vertical) caused by particular multipoles. a,

and a, are “fundamental” amplitudes. There are also numerical factors, of order one, not

shown.

Problem 2..16.

Show that the effect of a horizontal closed orbit displacement Az is to

produce “feed-down” such that the presence of multipole coefficients b, and a, leads to

multipoles

Problem 2..17.

2

= —na,Az.

(2.27)

Show that the effect of a vertical closed orbit displacement Ay is

to produce feed-down such that the presence of multipole coefficients b,, and a, leads to




44

multipoles

n—1 n—1

b Av) = na,Ay, a8 — —nbpAy. (2.28)

Problem 2..18. The Courant-Snyder invariant € of a particle executing one dimensional
betatron oscillations is given by v,2? + 2azz2’ + Bea’ 2 With proper axis-scaling, if the
motion is linear, the point in phase space with coordinates (z, z') lies on a circle and rotates
at uniform rate. The effect of a deflection 2z’ — z' + Az’ will sometimes be to increase €
and sometimes to decrease it. Show however that on the average there is a net increase
given by

< Ae>=B, (A2 (2.29)

Problem 2..19. Consider the one dimensional motion of a particle with amplitude
ay through a bending element that bends the central trajectory through angle Af. The
field nonuniformity of the magnet is described by a multipole coefficient b,,. Show that
he deflection suffered is bjal Af times an oscillatory factor in the range from —1 and 1.
Continuing to drop a numerical factor of order 1, show that the average fractional increase

in the Courant-Snyder invariant in passing through the magnet is

A nl ntl
S2CZ L (baal  BeA0) ~ (b AO) 7 it NI, (2.30)

€

where a, is quoted as No, where ¢, is the horizontal beam emittance and o, = /€, is

the r.m.s. horizontal beam size. This formula is not valid for n = 1. Why not?

The convergence (i.e. the extent to which succeeding terms become less important)

of the multipole series as a formula for magnetic field at displacement a, can be assessed

. . prtlgntl pntl . .
by the numerical value of ratios —z  — 2——qa,. But to estimate the absolute influence
y ba b
xr

on accelerator performance of a particular multipole an estimator like that calculated in
Problem 2..19 is needed. In practice, as mentioned before, there is a strong tendency for

lower powers of a, and b, to dominate.
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Examples and Problems

Exercises Concerning Symplectic Requirements and FFT Analysis

The following “problems” were developed using an HP-48 hand calculator; this makes
an HP-48 calculator especially appropriate for performing them. But no use is made
of the graphics capabilities, and it is likely that any programmable calculator can be
used to automate many of the operations. Some of the calculations assume that your
calculator has matrix handling capabilities, such as multiplying, transposing, and inverting.
If your calculator lacks these capabilities (the normal situation) it will be necessary to skip
some parts. To allow for that, typical output data sets are given for possible use in
subsequent parts. The purpose of this series of problems/exercises is to make concrete
the symplectic turn-by-turn mapping of particle coordinates, the difference equation the
coordinates satisfy, and their tune/frequency analysis using Discrete Fourier Transform’s.

Depending on the calculator that is available, this “making concrete” will take different
forms. With the HP-48, the codes given can simply be keyed in and various cases tried.
Variable names begin with upper or lower case alphabetic characters and can contain
decimal integers. By (my) convention program names begin with a $ symbol. Programs

themselves are contained within << and >>. Hence
$PLUS: << A 3 + A’ STO >>

is a program that loads A then 3, adds them, and stores the result in A’s memory location
YA,

With a programmable computer lacking matrix manipulations, only some of the codes
can be generated. In any case, it is not intended that all problems be completed. Rather
they represent a somewhat coherent train of thought and the purpose is to understand the
sequence, repeat some calculations, and spot check others. This is intended to enhance
familiarity with, and confidence in, the methods. Some of the examples include analytic
work and/or reasonably short calculations; they are identified as “problems” rather than

“examples”.

FFT.1 Generate a random 4 x 4 transfer matrix.

$RAN: << 1 16 FOR I RAND 2 * 1 - NEXT { 4 4 } ->ARRY ’R44’
STO >>
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—0.9215 —0.8827  0.5889 0.8173
0.0614 0.5857 —0.3813 0.7203
0.1137  0.1917 —0.6056  0.9430
0.4199 —-0.3086 0.7853 —0.0874

R44 =

Problem 2..20. Generate a simple, obviously symplectic, unperturbed 4 x 4 transfer

matrix using, for example, tunes QX=0.1 and QY=0.2.

$MO: <<
QX PI * 2 x DUP COS SWAP SIN 00
QX PI * 2 x DUP SIN NEG SWAP COS 00
00 QY PI * 2 x DUP COS SWAP
SIN
00 QY PI * 2 x DUP SIN NEG SWAP
Ccos
{441}
->ARRY ’MO’ STO
>>
0.8090  0.5878 0 0
—0.5878 0.8090 0 0
MO = 0 0 0.3090 0.9511
0 0 —0.9511 0.3090

Problem 2..21. Algorithm for converting an almost symplectic matrix into a symplectic

matrix. Define

0 -1 0 O
1 0 0 0
5= 0 0 0 -1
0 0 1 O

The “symplectic conjugate of matrix M is defined by
M=-SMTs,
where M7 is the transpose of M. One can write a calculator routine to perform this
operation
$BAR: << TRN S * S SWAP * NEG >>

A matrix M is symplectic if and only if

Suppose that M is “almost” symplectic. Define a new matrix, close to M by
M- MMM

M, =M + 5
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Neglecting terms quadratic in M — Mg, show that M, is approximately symplectic.

One can write a calculator routine, using 4 x 4 unit matrix 144

$SYM: << DUP DUP $BAR * 2 / NEG I44 1.5 % + SWAP * >>

Problem 2..22. Generate a randomly perturbed, coupled 4 x 4 transfer matrix. Normal-
ize it to have unit determinant and then make it symplectic. Find its characteristic poly-

nomial, its eigenvalues A and A4 = )\A+)\;11 =2cos(pnaq) and Ap = )\A+)\Bl = 2cos(up).

$M: <<
MO R44 FAC x + DUP M’ STO
DET DUP ’D’ STO SQ 0.125 =~ M SWAP /
$SYM $SYM $SYM $SYM $SYM °M’ STO
>>

0.7499  0.5207  0.0321 0.0675
—0.6098  0.9076  —0.0071 0.0439
—0.0035 —0.0250 0.2493  1.0499
0.0696  —0.0438 —0.8788 0.3028

M =

At = 2.2096)° + 2.90850% — 2.2096)\ + 1 = 0.

Aa = 0.8317£0.5552, Ap = 0.2731 £ 0.9620.

Ag =1.6635, Q4 =0.0937, Ap=0.5461, Qp = 0.2060.

FFT.5 For a starting displacement Xy such as zg = 1, fo = 0,y0 = 1,90 = 0,
i.e. in the calculator [1 0 1 0], iterate the matrix multiplication X;1; = M X;
NTR=16 times. This generates simulated data at a single “BPM” that will
subsequently by used to test the difference equation and for FFT analysis.

$x4: <<

{ } SWAP

1 NTR START

1 DUPN 0BJ-> 1 GET —->LIST ROT SWAP + SWAP
( 1 DUPN EL GET ROT SWAP + SWAP
( 1 DUPN 1 DUPN 1 GET SWAP 3 GET R->C ROT SWAP +
SWAP )

M SWAP *

NEXT

SWAP ’TRK’ STO

>>
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Substituting the first line in parenthesis for the preceding line generates output
forEL = 1,2,3, or 4. Using the following line generates output z;+:y;, useful
for FFT below.

Tn In Yn gn
1.0000 0.0000 1.0000 0.0000
0.7821 —0.6169 0.2458 —0.8092
0.2186 —1.0741 —0.7756 —0.3796
—0.4459 —-1.1192 —-0.5659 0.6289
—0.8929 —0.7122  0.5487 0.7057
—0.9751 —-0.0748 0.8986 —0.2995
—0.7616  0.5071 —0.0851 —0.9449
—0.3736  0.8838 —1.0233 —0.2865
0.1277 1.0246  —0.5767  0.7478
0.6612 0.8890 0.6152 0.6973
10 1.0256 0.4298 0.8609  —0.3225
11 0.9988 —0.2556 —0.1383 —0.8017
12 0.5574 —0.8752 —0.8732 —0.0406
13 —-0.0685 —1.1298 —0.2404 0.8322
14 —0.5912 —-0.9453 0.8423 0.5079
15 —0.8742 —0.4812 0.7690 —0.5861

tracking output =

© OO U WNDR O S

Problem 2..23. Each of the components, and in particular x and y, satisfy fifth order

difference equations

Tiva + 2 — (A + Ap) (wits + zit1) + (2+ AgAp) 22 =0

Yiva +Yi — (Aa + Ap) (Yir3 + vis1) + (2+ AgAp)y2 =0

In theory the turn-by-turn data of the previous problem satisfy these equations, which are
normally considered to be difference equations for unknowns x;, y; with known parameters,
A4 and Ap but can alternatively be regarded as two nomnlinear algebraic equations for
unknowns A4 and Ap. Taking z;,y; pairs for any five successive turns as known, solve
these two equations for A4 and Ap, and from them calculate tunes Q4 and Qp. They

should agree with values given above.

Problem 2..24. Using the fifth order difference equation applicable to symplectic
propagation, write an expression to predict x;4+4 from x;, x;y1, T;12, and x;+3. Check this
equation numerically using the tracking data of Problem 2..22. Check that f;, y;, and g;

satisfy the same equation.
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x4 = > (LAMA+LAMD) *x3 - (2 + LAMA*LAMD)*x2 + (LAMA+LAMD)*x1 - x0’
$x4: <<
4 DUPN
LAMA LAMD + * SWAP
LAMA LAMD * 2 + x - SWAP
LAMA LAMD + * + SWAP

>>

This difference equation code propagates any particular element just as well as the matrix

code propagates the vector of 4 elements.

FFT.8 The following equations implement the N = 8 DFT (discrete Fourier
transform) for sequences of 8 complex numbers z; — Z;,4,5 = 0,1,2,...,7.
They are FFT’s in the sense that they have been manipulated to require only
8 multiplications and 26 divisions.

u=27/8,

l1=20+2, la=22+2, t3=2+ 25,

la=2—2, t5=2+27, t6=23— 21,

lr=1t1+12, lg=1t3+15

mo =17 +1t3, m1 =1ty —1g

my =11 —t2, m3=20— 24

my = cosu (ty —tg), m5=j(20 — 24)

me =7 (26 — 22), m7=—jsinu(ty + ts)

51 =m3+Mmy, S2=1Mm3— My, 8§3=1Mmg+ M7, S4=Mg— M7
Zo=mgy, ZL1=651+83, Zoa=my+ms, L3=252— 54
Zy=my1, 4Ls=83+ 84, ZLg=mo+ms, L7=51— S3.

But it is quite a bit easier to code the fundamental DFT formulas:

209 -1 s myen (-25),

n=0

which takes 64 multiplications and additions. Starting parameters are calcu-
lated by

$U: << 2 pi * N / DUP U’ STO i * NEG EXP ’WM1’ STO
>>

A column of coefficients is calculated by

$WC: << -> a << 1 0 R—>C 1 N 1 - START DUP a * NEXT
>> >>

The N x N array of coefficients is calculated (once only) by
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$WE: <<
$U 1 0 R—>C °W1I’ STO
1 N START

WiI $WC WM1 * ’W1iI’ STORE* NEXT
{ N N } ->ARRAY ’WE’ STO
>>

The program $DFT accepts the array to be transformed from the stack lowest
level and replaces it by the transformed array.

$DFT: << WE SWAP * N / >>
The inverse transform, the IDFT, is given by

2 (n) = ng@) exp (ﬂgfk”) |

Essentially the same program can be used for either DFT or IDFT because,
with * indicating complex conjugation,

v = N (DFT{X*})*.
$IDFT: << CONJ WE SWAP * CONJ >>

Problem 2..25. The DFT of the 16 turns of data, z, = x + jyn, given in
FFT.5 is
Re Im
0.0243 0.0939
—0.0435  0.3666
0.0689  —0.2762
—0.2394 0.1148
0.2112 —0.1149
0.1210 —0.0393
0.0922  —0.0093
0.0750 0.0096
0.0612 0.0238
0.0474  0.0354
0.0300 0.0451
0.0003 0.0501
—0.0986  0.0219
13 0.4487  0.3939
14 0.1747  0.4274
15 0.0266 —0.1429

In this form the Fourier transforms of x and y are “mixed together”. Sep-
arate them as follows: suppose that X (k) and Y (k) (both complex) are the
transforms of x and y, (both real). That is

z(n) <7 (k),

z(n) <X (k),

y(n) <Y (k).

Z (k) = DFT{z,} =

— = =
B LD ©X0 U W~ O X



Show that .
X (k) =527 (N = k) + Z (n]],

Y (k) :% (Z* (N — k) — Z (n)].

Reversing the element order is the main complication in implementing this
separation:

$SEP: <<
DUP ’ZZ’ STO 0BJ-> DROP
1NFORIITIG+1-
PICK CONJ NEXT
{ N 1} ->ARRY ’ZZT’ STO CLEAR
ZZ ZZT + 2 / ’XX’ STO
ZZ ZZT - i * 2 / ’YY’ STO
>>

Commonly only absolute values are required in the tune domain.
$ABS: << 1 N FOR I I GETI SWAP DROP ABS I SWAP PUT NEXT

>>
EoX R Y (R)|
0 0.1211 0.0245
1 00723 0.4117
2 0.4234 0.1988
3 0.1752  0.0981
4 0.1341 0.1103
5 0.0865 0.0456
6 0.0733  0.0260
(IX (k)|,|Y (k)|)= 7 0.0685 0.0181
8 0.0685 0.0181
9 0.0733  0.0260

10 0.0865 0.0456
11 0.1341 0.1103
12 0.1752  0.0981
13 0.4234 0.1988
14 0.0723 0.4117
15 0.1211 0.0245

Here are some comments about these spectra. They are symmetric about the
center; that is about tune=0.5. (Tune/bin = 1/N.) With only 16 turns the
tune lines are not very sharp, and the tunes are not very well determined—not
nearly as well as in Problem 2..23. (Also x and y have somehow been reversed.)

ol
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Eigenanalysis of the linear map

Before continuing with the analysis of X + AX we perform eigenanalysis of just the linear
part. The linear transfer matrix X, and its symplectic conjugate X can be written in

partitioned form as

AB B\ _ (ACT
X=|C D F|, X=(B D H (2.31)
G H J EF 7

We will assume that interplane coupling is sufficiently weak that the matrices A, D, and
J, are “not too far from” the uncoupled 2 x 2 “design” transfer matrices corresponding
to pure x, y, and z motion respectively. However, the purpose of this assumption is
not to justify a perturbative expansion, since the formulas will be exact. Rather it is to
resolve ambiguities in identifying the roots of the equations by considerations of continuity.

Because X is necessarily symplectic, its symplectic conjugate, defined using block-diagonal

matrix S, each of whose diagonal blocks is ((1) _01 ,
X = -8xTs, (2.32)
is also its inverse
X=X1 (2.33)
We define an auxiliary matrix,
E=X+X=X+X1 (2.34)

having much simpler properties than X. In particular, if (as it does) X has eigenvalue
A\ = e with p real, then Z has real eigenvalue A = A + A~! = 2cos . This implies that

E has three, real, double eigenvalues, A;, Ay, and A, for a stable lattice.

Explicitly E is given by

tré I T U
== T trD I Vv (2.35)
U Vv trJ I

where

B+€:T:<h _f>; T:(S {1,) (2.36)
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E+§:U:<_T:n _kl>; U:<:1 i) (2.37)
F+F:V:<_ST _pq>; V:(f Z) (2.38)

Note especially that the 2 x 2 diagonal blocks of E are proportional to identity matrix I.
For simplifying formulas which follow, two relations, valid for 2 x 2 matrices, are useful:

AA =det A = |A|

- (2.39)
A+ A=trAl
The characteristic equation is
(trA—A)T T U
A (A) = det T (trD—A)T 1% = 0. (2.40)
U % (trJJ —A)T

This determinant can be worked out by following Gantmacher.® To simplify the algebra

it is useful to introduce symbols like
a=(trA—A)L (2.41)

Though this is a 2 x 2 matrix it commutes with everything and can be treated just like a
scalar factor. We obtain

A(A) = A3 — pi A2 — poA — p3 (2.42)

where
pr=trA+trD+trJ=As+Ap+ Ay

pp=—trA trD—trA trJ—trD trJ — |U|—|T|— |V|
:—(AAAD+AAAJ+ADAJ)
ps=—trD Ul —trJ |T|—trA|V|+tr (VIU) = AsApAy.

The expression for ps has a suspicious-looking lack of symmetry, but it is invariant to

(2.43)

reordering of the (z,y, z) coordinates; so also is its last term. For a stable lattice the three
roots of Eq. (2.42) are all real, and an explicit formula can be written for them. Following

Press et al.”, and defining

_pi+3p
C=""
p__ 2p} — 9p1p2 — 27p3 (2.44)
54

§ = arccos (R/@) ,
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the roots are given by

0+2
Ay =—2 Qcos< +37T> +p1/3 (2.45)
0+ 4rm

A3 =—2 Qcos(

The eigenvalue triplet (A1, Ao, A3) is some permutation of the triplets (Az, Ay, A;). These
can also be labeled (A 4, Ap, Ay) assuming the perturbations away from design, uncoupled
optics, leaves the tunes close to their design values. We will assume relabeling has been

performed so that (1,x, A) go together, as do (2,y, D) and (3, z, J).
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